- Integral GSM/GPRS 850/900/1800/1900 modem
- Binary inputs and outputs (4/2)
- Analog inputs (2)
- USB port
- 1-Wire inputs (2)
- Direct Pt100 and NTC sensors reading
- DIN rail mounting
- Configurable via SMS no PC needed
- Build-in SLA battery charger
- MIM option available
- SMA antenna connector

Telemetry module MT-020, thanks to its very attractive cost to feature ratio, is well suited for use in small sites remote monitoring systems. It allows monitoring, diagnosis and control of remote devices via text messages (SMS and e-mail), CLIP calls and using data packet transmission of GPRS network. Configurable text messages with a fixed or variable content (e.g. containing current measurement value) are convenient way to provide information to the monitoring center or directly to the defined staff phone numbers. Alarm messages can be generated on binary inputs and binary outputs state change, when measured analog values crosses alarm threshold, by timer and counter flags.

Communication via GPRS enables secure and reliable communication with higher-order applications (SCADA, database) allowing to expand the capabilities of the monitoring system using remote communication with difficult to access or distant sites.

Industrial design, practical I/O resources and easy-to-use software tools as well as the possibility of remote management of module via SMS commands or GPRS are the biggest advantages of MT-020. Direct connection of temperature sensors lowers the cost of building system. 1-Wire inputs can be used for reading typical Dallas pellets for the purpose of identification and authentication. The module can work with humidity sensors, water level sensors, pressure transducers, flow sensors, smoke, gas, motion, shock and noise detectors, etc.

MT-020 can be powered from a DC voltage source (9-30 VDC) or directly from the mains transformer (12-18 Vrms AC). Integrated circuit which controls and charges external battery ensures continuous system operation during power failures. Dedicated power output allows providing power to external sensors when operating from backup power source. Optionally module can be produced with 3G modem and/or with MIM (Machine Identification Module) soldered to PCB replacing or backing-up standard SIM card.

# **Typical applications:**

- Alarm systems
- Access control
- · Preventive diagnostic
- Remote meter reading (AMR)
- Remote control of various devices by CLIP call, SMS or GPRS (gates, pumps, heating, lighting, etc.)

### Resources

- 4 optoisolated binary inputs
- 2 potential less outputs with common ground
- Quad-band GSM/GPRS modem (optionally 3G modem)



- Dedicated Pt100 input (2- or 3-wire) that can be configured to operate as voltage (0 – 10 V/0 – 5 V) or current (4 – 20 mA) analog input
- Dedicated NTC sensor input that can be configured to operate as voltage (0 – 10 V/0 – 5 V) or current (4 – 20 mA) analog input
- · A USB port for configuration and diagnostic equipment
- Real Time Clock (RTC) possible external synchronization
- Two power outputs (one stabilized) providing power for external sensor
- · SMA antenna connector

### **Functionality**

- Two-way communication via SMS and GPRS
- Possibility to send SMS and e-mail messages or GPRS data frame on raise of alarm or according to schedule
- User-defined rules triggering communication (SMS, CLIP calls, e-mail, GPRS data frame) on binary inputs, timers flags, counters flags or registers and internal markers state change
- Binary inputs functionality:
  - configurable input filtering:
  - possibility of counting pulses in a user-specified range (max. 2 147 483 647) and direction (increase/decrease counter value)
- Analog values measurement:
  - temperature measurement with Pt100, NTC or 1-Wire sensors;
  - voltage measurement in 0 10 V or 0 5 V range;
  - current measurement in 4 20 mA range;
- possibility of linear scaling results of the measurements to engineering units;
- 4 alarm levels, alarm hysteresis, filtration & deadband parameters defined exclusively for each analog input
- · Control outputs functionality:
- bistable, monostable or toggle output with user-defined pulse duration time and normal state;
- local control control output state is changed by events;
- remote control output state is changed by writing via SMS/ingoing CLIP call/GPRS data frame value to module register
- Universal Timers functionality:
  - synchronization with internal RTC clock;
  - user-defined counted time range
- Configuration via USB port or from remote using SMS commands
- Dynamic insertion of the variables (e.g. temperature measurement, binary input state) into SMS text messages
- DTMF codes support













4DI/2DO

2<sub>A</sub>I



DIN RAIL





**MT-020** 

- Possibility of setting limits for SMS transmission
- Internal logger records the history of device operation; capacity up to 48 000 entries
- 12/24V DC accepted power supply
- Reach diagnostic LED set (module status, GSM communication activity, GSM signal strength, binary I/O's state)
- User-friendly configuration tools

### General

| Dimensions (length x width x height) | 105x86x58 mm  |
|--------------------------------------|---------------|
| Weight                               | 300 g         |
| Mounting type                        | DIN Rail 35mm |
| Operating temperature                | -20 to +55 °C |
| Protection class                     | IP40          |

#### **GSM Modem**

| Modem type | μblox LEON G100               |
|------------|-------------------------------|
| GSM        | Quad Band (850/900/1800/1900) |
| Class      | 10                            |
| Antenna    | 50 Ω                          |

### **Power**

|   | Power voltage range | 9 - 30 VDC  | 12 – 18 Vrms AC |
|---|---------------------|-------------|-----------------|
|   | Current for 12 VDC  | Idle 0,05 A | Max 1,50 A      |
| ſ | Current for 24 VDC  | Idle 0,03 A | Max 1,00 A      |

### Binary inputs I1 - I4

| Signal voltage range   | 0 – 30 VDC |
|------------------------|------------|
| Input resistance       | 12,7 kΩ    |
| Input ON (1) voltage   | > 9 VDC    |
| Input OFF (0) voltage  | < 3 VDC    |
| Minimum pulse duration | 10 ms      |

# Outputs Q1 – Q2

| Output type                                           | NPN switch to GND |
|-------------------------------------------------------|-------------------|
| Recommended load current for one output               | 50 mA             |
| Max. load current for one output                      | 250 mA            |
| Resistance in ON state                                | $3~\Omega$ max.   |
| Max. load current for both outputs powered from VOUT1 | 150 mA            |

# Analog/Pt100 input AN1 - temperature measurement

|                               | -                                   |
|-------------------------------|-------------------------------------|
| Sensor type                   | Pt100, 2- or 3-wired                |
| Wires resistance compensation | yes (applies only to 3-wire sensor) |
| Measurement range             | -40 to 200 °C                       |
| Accuracy                      | ±1 °C                               |

# Analog/NTC input AN2 – temperature measurement

| Sensor type       | NTC 10 k                              |
|-------------------|---------------------------------------|
| Measurement range | -25 to +55 °C                         |
| Accuracy          | $\pm 1$ °C (depending on used sensor) |

# Analog inputs AN1, AN2 - voltage measurement

| maiog mpato mit, miz romago modourom |                  |
|--------------------------------------|------------------|
| Measurement range                    | 0 - 5 V/0 - 10 V |
| Maximum input voltage                | 18 V             |
| Input dynamic impedance              | 150 kΩ typ.      |
| Accuracy                             | ±1,5 % max.      |
| Nonlinearity                         | ±1 % max.        |

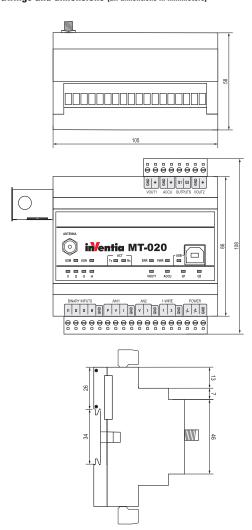
### Analog inputs AN1, AN2 - current measurement

| Measurement range       | 4 – 20 mA   |
|-------------------------|-------------|
| Maximum input current   | 50 mA max.  |
| Input dynamic impedance | 100 Ω typ.  |
| Voltage drop at 20mA    | 2 V max.    |
| Accuracy                | ±1,5 % max. |
| Nonlinearity            | ±1% max.    |

### **Backup battery input ACCU**

| Nominal battery voltage                 | 6 V            |
|-----------------------------------------|----------------|
| Battery type                            | Lead-acid/gel  |
| Max. charging current                   | 0.4 A (1.3 Ah) |
| (recommended minimum battery capacity*) | 0.8 A (3.0 Ah) |

<sup>\*</sup> Please check battery specification


### Power output VOUT1 (stabilized)

| Output voltage             | configurable - 12 V or 20 V |
|----------------------------|-----------------------------|
| Max. load current for 20 V | 150 mA                      |

### Power output VOUT2 (non-stabilized)

| Output voltage    | Vpower - 2 V |
|-------------------|--------------|
| Max. load current | 50 mA        |

# Drawings and dimensions (all dimentions in millimeters)



### **Supplementary information:**



INVENTIA Sp. z o.o.
Poleczki 23, 02-822 Warsaw, POLAND
tel.: +48 22 545-32-00, 545-32-01
fax: +48 22 643-14-21
inventia@inventia.pl, www.inventia.pl







INVENTIA complies with ISO 9001:2015 certified Quality Management System!
This project is co-financed by the EUROPEAN UNION
from the European Regional Development Fund resources.